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Borel quantum kinematics of rank k on smooth manifolds 

U A Mueller and H D Doebner 
Arnold Sommerfeld Institute for Theoretical Physics, lkchnical University of Clausthal, 
3392 Clausthal-Zellerfeld, Federal Republic of Germany 

Received 12 May 1952, m final form 29 September 1992 

Abslraet. We propose a model for quantizing a non-relativistic physical system that admits 
a finite number of internal degrees of freedom. We assume that the configuration space 
of the given system carries the Structure of a smooth manifold M. The hemat i c s  of 
the given system is assumed to be describable by a flow model. Under certain technical 
restrictions momentum and position operatom are seen to act on a Hilbert space of 
square-integrable sections of a Hermitian vector bundle over M. We determine their 
necessary shape up to isometric isomorphism and distinguish two types. In particular, 
we show that the number of inequivalent quantizations depends on the topology of the 
underlying coniiguration space. 

1. Introduction 

We describe a quantization rule for a non-relativistic physical system with a smooth 
finite-dimensional manifold M as configuration space so that finitely many internal 
degrees of freedom may be taken into account and which may possibly show how the 
coupling between internal space and configuration space reflects the topology of M. 
The rule is an extension [13, Is] of methods developed by Segal [16] and Mackey 
[12] based on the following concepts. The regions in configuration space where the 
system may be localized are modelled as Borel subsets of M. 'Ib mimic motion we 
use the flows of complete vector fields X of M with the complete vector field 
regarded as generalized momentum. We denote the collection of all Borel subsets of 
M by 5 ( M )  and the collection of all complete vector fields by X,(M).  We call the 
pair (B(M),X,(M)) together with the flow model 

B - c.;y(B) = Iv;y(m) I m E Bl 

a clossicul Borel kinematics. We quantize it by fixing a Hilbert space 'H and two maps 

E : B ( M )  -/?('H) P:X,(M) -+,Cs(31). 

Here, L+(31) and ,Cc,(31) denote the set of positive operators on 31 and the set of 
self-adjoint operators on 31 respectively. 

The map E has to respect the structure of the Borel a-algebra 5 ( M )  and the 
probability interpretation of quantum mechanics. As a consequence, E is a positive- 
operator-valued measure for M on 'H. We restrict E further by requuig it to be a 
projection-valued measure. 
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The map P is to respect, whenever possible, the Lie algebra structure of X,( M) 
and for each X E X,( M) the Row model is quantized via a one-parameter unitary 
shift-group {U(yf) I 1 E R) which satisfies the imprimitiviy condirion 

U(d)E(WJ(v?A = E((o;Y(W) . 
Both maps E and P need to be specified further. E is unique up to isometric 

isomorphy, if we fix the multiplicity k of the projection-valued measure. Then 
the Hilbert space 31 can be modelled as the space of square-integrable Ck-valued 
functions on M with respect to some measure v and the projection-valued measure 
acts through the characteristic functions of the elements of B(M).  

In accordance with 'classical' quantum theory, we wish to realize each P(X) as 
a differential operator. However, we have different possible choices for defining a 
domain of differentiability in 31, i.e. on the point set M x C'. 

For k = 1, Doebner and co-authors [3] showed that a generic choice is that of 
replacing the given Hilbert space by a Hilbert space of square-integrable sections of 
a line bundle, i.e. a C'-bundle, over M. In the case of a projection-valued measure 
of multiplici? k, the natural choice is to pass from the given Hilbert space of square- 
integrable C -valued functions on M with respect to some measure v to a Hilbert 
space of squareintegrable sections of a Hermitian vector bundle of rank k over M 
with respect to some measure v. One assumes furthermore a locality condition for P 
to ensure that P is given as a differential operator of finite order with respect to the 
mentioned differential structure. 

We call the procedure which we described above Borel quantization and the 
resulting object a Borel quantum &emutics of rank k over M. 

With these specializations one can hope to obtain a classification of all 
inequivalent triples (%,E,P) up to isometric isomorphy. For k = 1 a complete 
classification is known: 31 may be thought of as a Hilbert space of sections 
of a Hermitian line bundle with Rat connection and the equivalence classes of 
differentiable elementary quantum kinematics are isomorphic to r f (M)  x R, where 
r i ( M )  denotes the character group of the 6rst fundamental group of M. 

We will now consider the case where the projection-valued measure is of 
multiplicity k in detail and will focus on the question of the possible shapes of 
the map P and consequences thereof. 

The paper is organized as follows: in section 2 we formally define a quantum 
kinematics of rank k on M and derive the shape of the Hilbert space we will work 
with. We then determine the necessary shape of the momentum operators under the 
technical requirement of differentiability in section 3 and as a direct consequence we 
give the standard form of a differentiable qUanNm kinematics of rank k. Finally we 
investigate the question of equivalence of differentiable quantum kinematics and as a 
special case generalize the result of 121 and [3] stated above. 

2. Definitions and preliminary results 

Let M be a smooth manifold of dimension n, and (B( M) , X,( M)) the corresponding 
classical Borel kinematics. Denote by DX(M) the diffeomorphism group of M .  
A triple (X,E,U) consisting of a separable Hilbert space 31, a representation U 
of DX(M) on 31 and a projection-valued measure E for M on 31 is called a 
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quantization of (B( M ) ,  X,( M)), if for each X E X,( M) the one-parameter subgroup 
{ U ( ~ )  I t E R} of U(DS(M))  is unitary and satisfies the imprimitivity condition 

U(&E(B)~(VF;)  = E(475(B)) 

for each B E B( M).  
The map P is obtained from U via differentiation, i.e. P(X) is the generator 

of the oneparameter subgroup generated by X (its uniqueness and existence are 
guaranteed by the Stones theorem). P(X) is essentially self-adjoint Following the 
line of argument mentioned in the introduction and developed in [2,4, s] and [3] we 
require the map P in addition to reflect to some extent the properties the momentum 
map traditionally has. The map P is called a p m u l  Lie homomorphism, if 
(1) P ( X  + aY) = P(X)  + aP(Y) whenever X + a Y  E XJM) for X ,  Y E'XJM) 

and a E R, and 

P is called local, if 
(2) [p(X),P(Y)] = zP([X,y]) whenever [X,Y] E X , ( M )  for X , Y  E X J M ) .  

(mce(T,oE(B)) = 1 A X I B = 0 )  *(P(X)Y,Y)=(P(O)Y,Y) 

for all X E X , ( M ) , B  E B(M),y E D(P(X)) nD(P(O)), with Ty E T(71) 
denoting the pure state corresponding to y. 

We are mw prepared to define the object to be investigated. 

lkjindion 21. A triple (Z,E,P) is called a Borel quantum kinematics of rank k on 
M, if 
(1) for each X E X J M )  , P(X) is the generator of a oneparameter unitary 

subrepresentation of a representation U of DS( M) on 71 such that (E, E, U) is 
a quantization of ( B ( M ) , X , ( M ) ) ,  

(2) E is a projection-valued measure of multiplicity k for M on 71, 
(3) the map P is a local, partial Lie-homomorphism, and 
(4) there is a common dense domain 'D- for all E(B) and all P(X). 

lb distinguish Bore1 quantum kinematics of rank k, we say that (X,, E,, PI) and 
(E2, E,, Pz) are equivalent, if there exists an isometric isomorphism 

U:311+'H, 

such that U intertwines E,(B) and Q(B) for all B E B( M), as well as Pl(X) and 
P,(X) for all X E X , ( M ) .  

We now tum to the consuuction of all possible Borel quantum kinematics of 
rank k. For the sake of brevity we will omit the prefix Borel. We start with E Since 
E is a projection-valued measure, the main theorem of spectral multiplicity theory 
(see section 9.4 in [IS]) ensures the existence of a sequence {v,,} of mutually singular 
a-finite Borel-measures on M such that the given Hilbert space 71 is isometrically 
isomorphic with K: = e:=, Lz( M, Cn, U,) and E is equivalent to the projection- 
valued measure P on K given as 

P ( B ) ( h , f z , . . . )  = ( X S f l ~ X B f 2 , . . . ) .  

Here xs denotes the characteristic function of the set B. 
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Moreover, since E is homogeneous of degree k, we have v,, = 0 for n # k 
and so, with v = v,., there is an isometric isomorphism 

v : ‘IC - LZ( M ,  C k ,  U) 

such that the projection-valued measure E may be. r e a l i  as a family of 
multiplication operators on L2( M ,  ck, v): 

forall B € 8 ( M ) a n d a l l l l r € L 2 ( M , C k , v ) .  
Condition (1) in definition 21 ensures that for each X E X,.(M) the pair (Wx,E) 

where W x ( t )  = U ( q T )  for each t E R is a system of imprimitivity based on M 
acting in ‘IC (here we regard M as an R-space via the flow of the vector field X). It 
then follows from lemma 9.9 in [lS] that the measure class of E is invariant under 
the action of R and that the measure v is smooth (i.e. v is locally equivalent to 
Lebesgue-measure on Rn). We may then apply theorem 9.11 in 1181 to conclude that 
for fixed X E X, (M) ,  the image of the one-parameter subgroup { U ( q F )  I t E RI 
on L2( M, Ck, v) is given by 

(W(PW’+) (m)  = ( P 3 m ) ) 1 ’ z  n X ( t , m ) $  ( d d m ) )  

where pi“ denotes a version of the Radon-Nikodym derivative of the shifted measure 
v o pzz relative to v and I I x  is a strict (R, M, U( IC))-cocycle relative to the measure 
class of E. 

Theorem 9.11 in [lS] also associates to (Wx,E) the cohomology class of the 
cocycle IIx and thus makes possible a classification of the individual systems of 
imprimitivity in terms of cohomology classes of (R, M, U(k))-cocycles. Since we are 
primarily interested in the larger object, namely the quantum kinematics as a whole, 
we will not pursue this classhkation, valid for individual X E X,( M), in what follows. 

The quantization of the classical Bore1 kinematics induces a map Q of the algebra 
Cm(M,R) of smooth real-valued functions on M into &(‘IC) given by 

where 1, f dE denotes the unique operator satisfying 

with p L 2 ( B )  = (E(B)z,z) for z E 7.1. Here (,) denotes the inner product in 7.1. 
The operator Q( f )  is often referred to as a position operator. Q( f )  is realized as a 
multiplication operator on P ( M ,  ck, U) 

(VQ(f)V-%)(m) = f(m)+(m) 

for all f E Cm(M,R),+ E L 2 ( M , C k , v )  and m E M. In this realization it is easy 
to establish the following proposition. 



We next specify the domain Dm from definition 21. We already mentioned 
in the introduction that we wish to realize P(XJ as a differential operator which is 
plausible, since each vector field X is a differential operator relative to the differential 
structure of M. However, there is, U to the present, no notion of differentiability 
in L2( M ,  Ck, Y). We may identi3 C -valued functions on M with sections of the 
trivial Hermitian vector bundle (5" = (M x Ck, x M ,  M,Ck),  (,)J of rank k over 
M ,  the inner product (,)" being induced from the usual inner product on Ck (see 
[14], chapter 2). We may thus identify L2(M,Ck,v) and L2((o , ( , )o ,~) ,  the Hilbert 
space of square-integrable sections of tu. In this case we have equipped the point 
set A4 x Ck with the differential structure inherited from the natural differential 
structures of M and Ck. In general, there is more than one possible way in which 
to equip M x Ck with a differential structure. In fact, one can show that given an 
arbitrary Hermitian vector bundle ( E  = ( E ,  ?r, M, Ck), (,)) of rank k on M , there 
exists a differential structure D = (7,d) on M x Ck consisting of a locally compact 
second countable Hausdorff topology 7 for M x Ck and a maximal Cm-atlas A of 
IocalchartscompatiblewithTsuchthat ( E D  = ( ( M x C k , D ) , x M , M , C k ) , ( , ) , , )  is 
diffeomorphic with ([, (,)) and the corresponding diffeomorphism is an isometry on 
each fibre. Moreover, the u-algebras B(M x Ck,T)  and B ( M )  @ B(Ck) are equal. 
(See theorem 3 in [3] for the proof in the case k = 1. The proof readily generalizes 
to the case k > 1 with the obvious substitutions.) 

Given an arbitrary, not necessarily trivial, Hermitian k-vector bundle ((, (,)), the 
Hilbert space Lz(( ,  (,),v) of vsquare-integrable sections of ( contains a dense 
subspace of differentiable sections, namely set Sec;"(() of compactly supported 
smooth sections of ( (see 6.7 in 1171 and lemma 5.1.1.10 in [19]). By the 
result quoted above, there is a differential structure D on M x Ck such that 
((,(,)) and ( C D , ( , ) " )  are diffeomorphic and so the corresponding Hilbert spaces 
are isometrically isomorphic. Moreover, since the u-algebras B(M x C k , 7 )  and 
B ( M )  @ B ( C k )  coincide, is dense in L 2 ( ( u , ( , ) u , ~ ) ,  so that we may 
replace L2(€D,(,)o,v) by Lz(~o, ( , )o ,v) .  'rhus we may identi3 Lz(€,( , ) ,v)  and 
Lz( M, Ck, U). The projection-valued measure E is again realized as a family of 
multiplication operators on L 2 ( ( ,  (,), Y) (see [2,14]). We may thus conclude that a 
replacement of L Z ( M , C k , v )  by Lz((,(,),v) does not affect the realization of the 
projection-valued measure E, while the existence of a natural region of differentiability 
may enable us to gain further insight into the structure of the map P. In what follows 
we will therefore choose 31 to be LZ((, (,), U) for some Hermitian k-vector bundle 
((, (,)) and we choose the subspace Sec?(() as our dense domain. 

We call a quantum kinematics of rank k differentiable, if it is equivalent to a 
quantum kinematics ('H,E,P) with 'H = L2(E, ( , ) , v )  for some smooth Hermitian 

? 
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vector bundle (€,(,)) of rank k over M, if Sec,"(€) = 'Dm and if P(X) leaves 
Sec," ( E )  invariant for each X E X,( M) . 

U A  Mueller and H D Doebner 

3. The shape of the momentum operator in the case of a differentiable quantum 
kinematics d rank k 

Suppose that the quantum kinematics ('H,E,P) is differentiable, ie. 'H = 
L2(<, (,), Y )  ,where ( E ,  (,)) is an arbitrary but fixed smooth Hermitian vector bundle 
of rank k over M ,  (E(B)a)(m) = xB(m)u(m) for all U E 'H and all m E M, and 
P(X)Sec,"(€) C Sec,"(€) for each X E X, (M) .  

We now determine the shape of P(X) on Sec,"(€). Let V denote a connection 
on .$ compatible with the Hermitian metric on E (its existence is guaranteed by 
proposition 1.11 in [ZO]) and deEne for X E X J M )  the linear operator 

P ~ ( x )  :Sec,"(€) -sec,"([) 

bY 
2 

Pv(X)u = zVxu + ZdivY(X)u V u  E Sec,"(€). 

We compare P and Pv. Set 

Av(X) = P(X) - Pv(X) . 
Then for arbitrary f E Cm(M,R) and for U E Sec,"(E) one has with 
proposition 2 2  (6.) 

IAV(X),Q(f)lu= 0. 
P is local by definition and Pv is local by construction. Therefore, AV is also local 
and we have 

suppAv(X)u C suppu. 

Thus Av(X) is a linear differential operator of global order 0 on in the sense of 
definition 6.1 in [lo]. Therefore Av(X) E G"(M,Hom(<)), where Horn([) denotes 
the homomorphism bundle of e. 

We next determine properties of the map 

AV : X J M )  + C"(M,Hom([)). 

The operator Pv(X) is easily seen to be symmetric on Sec"(€) and P(X) is 
symmetric by definition. Thus Av(X) is symmetric. Since both P and P are semi- 
linear, is also semi-linear. 

(P(X)u)(F) = zd,u(F)+zB(X,F)u(F)+ i d i v v ( X ) u ( F ) + A v ( X , F ) u ( F ) .  

Here d, denotes the directional derivative in the direction X and e ( . , F )  denotes 
the connection matrix of V in the frame F. Let g E Cm(U, G L ( k ,  C)) be a change 
of frame of E over U. Then because of 

Ib 

If (U, h) is a local trivialization of E on U and F is a frame for E on U, then 

(P(X)o)(Fg) = g-'(P(wa)(F)  
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AV transforms under g like a section of Hom(F): 
Av(X,Fg)  = g-'Av(X,F)g. 

Therefore, AV is the restriction of a linear differential operator 
w : X ( M )  + Secm(Hom([)). 

As a consequence of the requirement that P be a partial Lie homomorphism it 
follows from 

N X ,  Yl)u = zv[x,Y]" + +,([X, + 4x7 y l ) D  

and 

[P(X),P(Y)]a= -[Vx,V,]0- ;(Xdw,(Y)-Ydiv,(X))a+ ... 
" '+ Z(VXW(Y) - V,w(X))u+ [w(X),w(Y)Ia 

for each D E Sec,"(E), that 

where 0 denotes the curvature of V and D stands for the exterior covariant derivative 
with respect to V. 0, regarded as a differential operator from X ( M )  x X ( M )  into 
Secm(Hom([)), is of local order 0 for every local coordinate representation. By 
introducing local coordinates and Writing w as a differential operator of local order 
m, one finds via a cumbersome comparison of coefficients that there is a differential 
one-form wu with values in Hom(c) and a self-adjoint section 4 E Secm(Hom([)) 
such that 

ie. w is of at most order 1 (see [14,2]). 4 and wu are related as follows. If 9 denotes 
the connection on Horn([) induced by V then 4 E Sec"(Hom(E)) obeys 

w(X) = w,(X) + $div,(X) VX E X ( M )  

9x4  = Z[U"(X),41 

-Q(X,Y) = (Dwo)(x,Y)-z[wo(x),wo(Y)] 

and wo satilies 
1 VX,Y E X ( M ) .  
Z 

The linear connection on E obtained by replacing V by V - zwo is again compatible 
with the Hermitian met& on < and, more importantly, is Aat 

Propmifion 3.1. Suppose that (X,E,P) is a differentiable quantum hematics of 
rank k on M with 

In summay, we have seen: 

31 = L2([, (,),v) E(B)D = XB . U VU E 31 VB E B ( M )  
where ( E , ( , ) )  denotes a Hermitian vector bundle of rank k. Then admits a flat 
connection V which is compatible with the Hermitian metric (,), and there is a u(k)- 
valued $-parallel 4 in Sec"(Hom([)), ie. $x+ = 0 VX E X , ( M ) ,  (9 denotes 
the connection on Hom(E) induced by V) such that 

P ( X ) u =  zVxu+ (~idk(E)++)div,(X)o 

for all X E X,( M) and for all U E Sec,"([). 
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Proposition 3.1 is the cornerstone of any classification. It restricts the possible 
number of differentiable quantum kinematics of rank k on M, insofar as the 
corresponding Hermitian vector bundle on M must admit a flat connection and 
enables us to associate to any differentiable quantum kinematics of rank k on M 
a triple (u,(c,( ,) ,V),+) consisting of a smooth Borel-measure U on M ,  a flat 
Hermitian vector bundle over M and a u(k)-valued $-parallel section 4 of Horn(<). 

Above we have deduced the necessary shape of a differentiable quantum 
kinematics of rank k. Differentiable quantum kinematics of rank k exist for each 
smooth manifold M (see [14]): Given a smooth manifold M, simply choose a 
Hemitian vector bundle ( e , ( , ) )  over M of rank IC with flat connection V. Let 
U be a smooth Borel-measure on M and set q5 = 0. Then 

'H = L2(€ ,  L),  U) 

P ( x ) ~  = zvXo + i d i v , ( ~ ) a  vx E X J M )  vu E sec;(() 

E ( B ) u = x ~ . u  V U E X  VBEB(M) 

is a differentiable quantum kinematics of rank k on M. Here, we have chosen 4 = 0. 
(For a proof see [15] in the case of an orientable manifold and [I41 otherwise.) Note 
that in integrated form the choice c = 0 corresponds to each cocycle l I x  being a 
co-bounday, and so the individual systems of imprimitivity are the Kmpman systems 
of imprimitivity of [18]. 

4 Equivalence of diRerentiable quantum kinematics of rank k 

We consider as a last topic the question of equivalence of two quantum kinematics 
of rank IC. The following proposition gives the full answer: 

Reposition 4.1. Let ('Hl,El,Pl) and ('H2,E2,P2) be hvo differentiable quantum 
kinematics of rank IC with corresponding triples (V~,((~,(,)~,V~),~~), i = 1,2. 
('Hl,El,Pl) and ('H,,q,P2) are equivalent, iff there exists a diffeomorphism 
r :El  -& with 

(1) rl?ryl(m) : q l ( m )  --+ ~ ; ' ( m )  is linear, 
(21 I? is isometric, 

Remark. We will call a diffeomorphism from El to E, with properties (I), (2) and 
(3) an isomeh-ic isomovhism that intertwines the connections. 

PrmJ Suppose that : (cl,(,)l,V1) -+ ( ~ , , ( , ) , , V 2 )  is such that it satisfies 
(1)-(4). Let p denote a version of the Radon-Nikodym derivative of vl with respect 
to v2. We define U : 'H1 --+ 'H2 by 

uo = ~ l s e ~ p ( - ~ ~ ~ ~ ~ ) r ~  
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for U E Xl. By the properties of I?, U is an isometric isomorphism. If E is an 
arbitrary Bore1 subset of M, then for r E Xz and m E M, 

JT;T ( - 2 4 z h ~ )  0 r 0 E(B) 0 r-' 0 -exP ( 2 4 z h ~ ) ~  ( m )  6 )  
= ((=P (-"&In P ) X B  exP ( '42 In p ) )  T, (m) 
= X B ( ~ ) T ( ~ )  = E z ( B ) r ( m ) .  

Thus U intertwines E1(E) and &(E)  for each E E B(M). 
For X E X J M )  and T E Sec,"(Cz), straightforward calculation yields 

U ( v ~ u ( u - ~ T ) )  = - + ( X i n p ) r +  z(x inp)4 , r+  VZ,T 

and consequently UoPl(X) oU-' = Pz(X). Since Sec,"(&) is dense in 'HZ, Pz and 
PI are equivalent. Thus ('Hl,El,Pl) and (X2,EZ,Pz) are equivalent. 

We have 
X i  = L z ( & , ( , ) i , v j ) ,  i = 1,2. Since v, and vz are smooth Borel-measures, they 
belong to the same measure class. Let p denote a version of the Radon-Nikodym 
derivative of v, with respect to vz and define 

Now suppose that the given quantum kinematics are equivalent. 

V : %  -+x = ~z(~l,(,)l,~z) 

bY 

Vu = exp ( -~$~lnp)JT;u VU E 71'. 

V is an isometric isomorphism and for U E 71 and E E B( M) 

( V o  El( B) oV-') U = xsu := E( E ) u  . 
For X E X J M )  and U c Sec,"(G) we have 

P(X)u := (VoP1(X)oV-') U = zVxu+ I (zidsec(F,) 2 + 4,) div,(X)u. 

Moreover, VSec,"(E,) = Sec,"(C1). It is obvious that ( X , E , P )  is equivalent with 
(Xl,EI,Pl) and by transitivity with ('HZ,&,Pz). Thus there exists an isometric 
isomorphism W : 7 1 - + 7 1 , =  LZ([z,(,)Z,vz) such that 

w0 E ( E )  o w-l = &(E)  

WoQ(f)oW-' = Qz(f) 
VE E B ( M )  

Vf E Cm(M,R) 

w o P ( x ) o w - ' = P z ( x )  - VXEX,(M). 

Here, Q and Qz denote the quantizations of Cm(M,R) induced by E and E, 
respectively. Since, furthermore, W maps polynomials in Q and polynomials in P 
into polynomials in Qz and polynomials in Pz, we have wSec,"(cl) = Sec,"(&). 
Since W intertwines Q and Qz, it follows that W is C"(M,C)-linear. Thus W is 
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induced by an isometric isomorphism r: (Elr  (,)') -+ (cz,(,)z). If X E X ( M )  and 
U E Sec;"(&), we have 

W O  P(X) 0 w'U = z(r 0 v i  0 r-l)u + (3ids.c(E2) + (r 0 0 r-1)) divv2(X)u. 

A comparison of this expression with Pz(X) shows that for W to intertwine Pz and 
P we need 

2 

((r v:, r-l) - v;) = (+z - (r r-')) d i ~ , ( x ) ~ .  

The left-hand side of this equation is a differential operator of (at most) order 1 on 
Sec;(&) while the right-hand side 5 of order 0. For fixed o the left-hand side is 
G"(M,R)-linear in the vector fields while due to the properties of divvZ, this is true 
for the right-hand side iff +2 = r o o I?-'. So we have for all X E X ( M )  and for 
all U E Sec,"(&) 

((r v:, r-l) - 0;) = o 
and so 
the proof of the proposition. 

is an isometric isomorphism that intertwines the connections. This concludes 

We briefly discuss the following special cases where only the momentum operators 

(1) in the choice of flat connection and hence in the choice of the section 4, 
(2) in the choice of the section + only. 

differ. The given differentiable quantum kinematics diRer 

Proposifion 4.2. Let (X,E,P,) and ('H,E,P,) be two differentiable quantum 
kinematics of rank IC with 

Pi(X)u = zV$u+ (;idsc(() + + j )  div,(X)u 

for all X E X,(M) ,  U E Sec?(c) and i = 1,2. Then they are equivalent iff 
there exists a unitary section v E Secm(Hom(c)) such that +z = v o o v-I 
and Vz = V' + v o V'v-'. 

Outline of proof. Since the underlying Hilbert spaces are equal, the isometric 
isomorphism from proposition 4.1 is a unitary operator on 31 and so the isometric 
isomorphism on ((,(,)) is fibre-wise unitary. The condition on V' and Vz then 
follows in a straightforward manner. 

If we now assume V' and Vz to be equal, then we have as an easy consequence 
of proposition 4.2 

Corolluy 4.3. Let (X,E,P,) and (X,E,Pz) be two differentiable quantum 
kinematics of rank IC with 

P i (X)u  = zVxu+ (;idscct) + +j)div,(X)u 

for all X E X J M )  , U E Sec;(€) and i = 1,2. Then the two quantum kinematics 
are'equivalent iff there exists a unitary $-parallel section v E Sec(Hom(€)) such that 
+ 2 = v o + , o v - .  1 
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The proof follows from the observation that V1 = V2 iff v o ($'U-') = 0 if€ 

Finally, we introduce a subclass of differentiable quantum kinematics of rank IC: 
those for which 4 = e .  id,(<) for some real C. We will call these differentiable 
k-quannun kinematics cf type 0. Condition 4 of proposition 4.1 now simplifies to 
c1 = 9 and we have: 

Proposition 4.4. Let ('Hl,El,Pl) and ('Hz,Ez,Pz) be two differentiable quantum 
kinematics of rank k with corresponding triples ( ~ ~ , ( & , ( , ) ~ , v ~ ) , q ) ,  i = 1,2. 
(Xl,E,,Pl) and (7f2,q,P2) are equivalent if and only if cl = e, and there exists 
an isometric isomorphism r : &l -+ 8, that intertwines the connections. 

= o iff v is $-parallel. 

Proposition 4.4 enables us to construct equivalence classes of differentiable k- 
quantum kinematics of type 0. We have as a corollary: 

Corollary 4.5. Denote by [ V k m ( k ) ] ( M )  the set of isomorphy classes of flat 
Hermitian vector bundles of rank k on M. Then there is a bijection between 
the set of equivalence classes of differentiable kquantum Enematics of type 0 and 
IVkYk)l(M) x R- 

We end our discussion with a complete classification of all differentiable k- 
quantum bematics of type 0 on M If q is a complex vector bundle on M of 
rank k, then the corresponding frame bundle, a GL(k,C) principal bundle on M 
whose transition functions coincide with those of q (see [m], p 66), admits a flat 
connection iff q admits a flat linear connection @y corollary 3.22 in [6] and 1842) 
in [SI). Thus there is a bijective correspondence between flat GL(k,C)-bundles and 
flat complex vector bundles. If furthermore q admits a Hermitian metric which the 
given flat connection is compatible with, then the corresponding principal bundle is 
reducible to a U(k)-bundle with flat connection (see propositions 111.1.5 and 11.6.2 
in [U]). Thus there is a bijection between flat U(k)-principal bundles on M and 
fiat Hermitian vector bundles on M of rank k. By lemma 1 in [13] a U( k)-principal 
bundle admits a flat connection iff it is induced from the universal covering bundle of 
M by a homomorphism h from the fundamental group rl( M) into U(k). Therefore, 
there is a bijective correspondence between the set conj(Hom(r,(M),U(k))) of 
conjugacy classes of homomorphisms h : r l ( M )  - U ( k )  and [ V k m ( k ) ] ( M ) .  We 
may hence rephrase corollary 4.5 as follows: 

Propositwn 4.6. The set of equivalence classes of differentiable k-quantum 
kinematics of type 0 on M is isomorphic with the Cartesian product 

conj( Hom( rl( M),U(  k))) x R . 
Differentiable quantum kinematics of rank k and type 0 are, as has been seen 

above, quite amenable to classification. They indeed yield the straightforward 
generalization of the elementary quantum kinematics which has been discussed in 
[Z] and [3]. Those not of type 0 appear to be far less tractable. Here, we essentially 
require the existence of a gZobaZ section of the homomorphism bundle of the given 
vector bundle which is parallel with respect to the given f i t  connection. The local 
existence of such solutions is guaranteed by the flatness of the connection on the 
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vector bundle (see the Frobenius’ theorem in [A). A subclass of solutions that may 
be of interest is that of constant solutions not equal to c . id+ct). Solutions of this 
form will certainly exist when the given vector bundle is trivial, III which case we may 
choose the connection m a w  to be 0. Then we can expect solutions parameterized 
by vectors in Rk, namely by the eigenvalues of the ma& 6. 

U A Mueller and H D Doebner 

5. Outlook 

We have shown, as promised in the introduction, that the quantization of a non- 
relativistic system moving on a manifold M depends significantly on the topology of 
M. For a certain class of Borel quantum kinematics, those of type 0, a complete 
dassiJication is obtained, depending on Hom(r1(M),U(lc)) and on a real number c. 
This number may be interpreted as a new quantum number. The degrees of freedom 
in Ck are interpreted as internal. There is no coupling between internal and external 
degrees of freedom in the case of a type 0 Borel quantum kinematics. 

We will present results and a physical interpretation for Borel quantum kinematics 
not of type 0 in a subsequent paper. 
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